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1 Introduction

This paper is concerned with the effective par-

allel symbolic computation of operators under

composition_ Examples include differential oper-
ators under composition and vector fields under

the Lie bracket. In general, such operators do not

commute. An important problem is to find effi-

cie_tt algorithms to write expressions involving

noncommuting operators in terms of operators

which do commute. If the original expression

enjoys a certain symmetry, then naive rewriting

requires the computation of terms which in the

end cancel. 'In [8], we gave an algorithm which

in some cases'- is fixl_onentially faster than the
•naive expansion Qf the noncommutating opera-

tors. The pul:pose'0f this paper is show how that

--:" algorittlm-can be naturally parallelized.

In Section 2, we give a careful statement of

the problem. In Section 3, we discuss data struc-

tures consisting of formal linear combinations of

rooted labeled trees. We defr_e a multiplication

on rooted labeled trees, thereby fnaking the setof
these data structures into an associative algebra.

We then_define _an algebra homomorphism fro-m

the original algebra of operators into this alge-

bra of trees. In Section 4, wextescribe an alge-

bra homomorphism from the algebra of trees into

the algebra of differential operators. The-canceI2 =i
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lation which occurs when noncommuting opera-

tors are expressed in terms of commuting ones

occurs naturally when the operators are repre-

sented using this data structure. This leads to an

algorithm which, for operators which are deriva-

tions, speeds up the computation exponenti,'dly

in the degree of the operator. This is described
in Section 5. Sections 3-5 follow the treatme_Lt

9f [8]. In Section 6, we show howthe algebra of

trees leads naturally to a parallel version of the

algorithm _

Here-is-a conqrete example of the type of com-

putations we ar_concerned with. Fix three vec-

tor fields El, E2, _4 in l:t N with polynomial co-
j. _. 7

efficients a i . --

El _ 0 =: far i= 1,2,3.
= Z ai oxj ' \ 2

j=l

Considering the vector fields as first-order dif-

ferential operators, it is natur_ to form higher-

order differential operators fro_ them, such as

the third-order differential operMor

p = EaE2E1 - E3E1E2 - E_E1E3 + EtE2Ea.

Writing this differential operaior in te_rms of the

O/OXl, ..., O/OxN yields a first-c_ler_ clifferential

operator because of the symmetry of the expres-
stun p causes ali Second- and thiri)t:t>rder terms
to cancel. - --

In this paper we analyse an algorithm for ex-

pressing differential operators p in ternI__ of the

commuting derivations O/Oxl, ..., O/Oxg in

such a way that second and third order t,erms

which cancel are not computed. In the example

above, the naive computation would require the
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computation of 24N 3 terms, while the algorithm

we describe here would involve just the compu-
tation of the 6N 3 terms which do not cancel.

We conclude this introduction with some re-

marks.

. In actual applications expressions possessing

symmetry arise more often than not. For ex-

ample, Lie brackets of vector fields possess

a great deal of symmetry. The algorithm

we discuss is designed to take advantage of

such symmetries, if they are present, with-

out the necessity of explicitly identifying the

symmetries.

. Once a set of data structures has been given

an algebraic structure, it becomes natural

to view algorithms concerned with simplifi-

cation as simply the factoring of a map into

the composition of a map into the algebra of

these data structures, and a map from this

algebra. This is the simple idea which is at

the basis of the algorithm we describe. We

expect that this idea will find application
elsewhere.

. See [4] and [3] for previous work on the sim-

plification of expressions. See [9] and the
references contained there for previous work

on parallel symbolic computation.

2 Higher-order derivations

In this section we give a careful statement of the

problem and state the main result. Let R be a

commutative algebra with unit over the field k.

(Throughout this paper k is a field of character-

istic 0.) A derivation of the algebra R is a linear

map D of R to itself satisfying

D(ab) = aD(b) + bD(a), for all a,b • R.

Let D1, ..., DN be N commuting derivations of

R, that is, for i, j = 1, ..., N,

D/Dja = DiD�a, for all a • R.

Suppose that we are also given M derivations El,

• .., EM of R which can be expressed as R-linear

combinations of the derivations D,; that is, for

j=I,...,M,

N

Ej = _ a_D_,,3

_=1

where aj • R. (I)

We are interested in writing higher-order deriva-

tions generated by the El, ..., EM in terms of

the commuting derivations D1, ..., DN. More

formally, let k<E1,... ,EM> denote the free as-

sociative algebra in the symbols E1, • • •, EM and

let Diff(D1,...,DN;R) denote the space of for-

mal linear differential operators with coefficients

from R; that is, Diff(D1,..., DN; R) consists o[

all finite formal expressions

N N

jul=l /Zl .u2=l

a_,1,2 Di,2 D,, + • ••

where a_,l, a m_,2, "-" E R. We let

X : k<Et,... ,EM> _ D/if(D1,..., DN; I_)

denote the map which sends p • k < E1 ,..., EM >

to the linear differential operator X(P) obtained

by performing the substitution (1) and simplify-

ing using the fact that the D_, are derivations of
R.

Suppose p • k<E1,...,EM:> is of the form

p = )-:_pi,

/=1

where each term pi is of degree m. The naive

computation of )((p) would compute X(pi), for

i = 1,... ,l. This would yield lm! N TM terms. As-

sume CostA(p), the cost of applying algorithm A

to simplify p E k < El , ..., EM > , is proportional

to the number of differentiations and multiplica-

tions. Then

CostNAIVE(P) = O(Im m! N m)

In Section 5, we describe an algorithm which pre-

processes an expression p in such a way that any

terms which cancel after the substitution (1) are

not computed. We show:

Theorem 1 Assume that



(i) p is thesum of l = 2 m-1 terms, each ho-

mogenous of degree m;

(ii) i = X(P) is a linear differential operator of

degree 1.

(iii) m,N _ oc in such a way that 2m-2m <<
N m .

Then

CostBETTER(P) __O( 1 ,)
COStNAIVE (p) m2 m-1 "

In Section 6, we describe how this precomputa-

tion can be done as a parallel computation.

Observe that a Lie bracket of degree m on 1%N,

for large enough N, satisfies the hypotheses of
the theorem.

3 Trees and differential opera-

tors

In this section we describe the connection be-

tween algebras and trees which is essential for

the description of the data structures which we

use in the next section, and for the analysis of

the algorithms which use those data structures.

By a tree we mean a rooted finite tree [10]. If

{El, ..., EM} is a set of symbols, we will say a

tree is labeled with {El, ..., EM } if every node
of the tree other than the root has an element

of {El, ..., EM} assigned to it. We denote the

set of all trees labeled with {El, ..., EM} by

£T(E1, ..., EM). Let k{/:T(E1, ..., EM)} de-

note the vector space over k with basis £T(E1,

..., EM). We show that this vector space is a

graded connected algebra.

We define the multiplication in k{£T(E1, ...,

EM)] as follows. Since the set of labeled trees

form a basis for k{£T(Ex,..., EM)], it is suffi-

cient to describe the product of two labeled trees.

Suppose tl and t2 axe two labeled trees. Let Sl,

..., sr be the children of the root of h. If t2 has

n + 1 nodes (counting the root), there are (n+ 1)r

ways to attach the r subtrees of tl which have sl,

..., sr as roots to the labeled tree t2 by making

each si the child of some node of t2, keeping the

original labels. The product tit2 is defined to be

the sum of these (n + 1)_ labeled trees. It can be

shown that this product is associative, and that

the tree consisting only of the root is a multi-

plicative identity; see [5].

We can define a grading on k{£T(E1, ...,

EM)] by letting k{£T,_(E1, ..., EM)} be the

subspace of k{£T(E1, ..., EM)} spanned by the

trees with n + 1 nodes. The following theorem is

proved in [6].

Theorem 2 k{£T(Sl, ..., EM)] is a graded

connected algebra.

If {El, ..., EM} is a set of symbols, then the

free associative algebra k<E1, ..., EM> is a

graded connected algebra, and there is an alge-

bra homomorphism

¢ : k< El,..., EM > ---" k{£T(E1,..., EM)}.

The map ¢ sends E_ to the labeled tree with two

nodes: the root, and a child of the root labeled

with Ei; it is then extended to all of k<E1, ...,

EM> by using the fact that it is an algebra ho-

momorphism.

We say that a rooted finite tree is heap-ordered

in case there is a total ordering on all nodes in

the tree such that each node procedes all of its

children in the ordering. We say such a tree is la-

beled with {El, ..., EM] in case every element,

except the root, has an element of {El, ..., EM]

assigned to it. Let k{£?-IOT(E1,...,EM)} de-

note the vector space over k whose basis consists

of labeled heap-ordered trees. It turns out that

k{£?'IOT(E1,...,EM)} is also a graded con-

nected algebra using the same multiplication de-

fined above. See [6] for a proof of the following
theorem.

Theorem 3 The map

¢:k<E1,...,EM> _ k{f_OT(EI,...,EM)}

is injective.

4 Simplification of higher or-

der derivations

In this section we define a map

g, : k{£T(E1,...,EM)} _ Diff(D_,...,Dg;R).

We do this in several steps.



Step 1. Givena labeledtree t E £Tm(EI, ...,

EM), assign the root the number 0 and

assign the remaining nodes the num-

bers 1, ..., m. From now on we iden-

tify the node with the number assigned

to it. Let k E nodest, and suppose

that l,...,l' are the children of k. Fix

#t,...,#l, with

1 <__#t,...,#t, < N

and define

Rt( k; #t , . . . , #t, ) = D m • • •D_q, a uk"Tk

if k is not the root

= D m ...D_,t,

if k is the root .

We abbreviate this to Rt(k) or R(k).

Observe that Rt(k) E R for k > 0.

Step 2. Define

N

¢(t) =
/_1, ..-, #m =1

R(m)... R(1)R(0).

5 The cost of computing

derivations

In this section, we briefly review the discussion in

[8] on the work required to write an expression
composed of noncommuting operators in terms

of commuting operators. This will prepare us for
the next section in which we consider the cost

to simplify such expression given several pro-

cessors. We make the following asssumptions:

p E k<E1,...,EM> is of the form

p = Zpi,
i=1

where each term pi is of degree m; the cost of

a multiplication is one unit and the cost of a

differention is one unit; the cost of an addition

is zero units; and the cost of adding a node to

a tree is one unit, so that the cost of building a

tree t E/_'Tm(E1, ..., EM) is m units.

Proposition 5 (i) X(P) contains lm! N rn
terms.

(ii) The cost of computing X(P) is 21m m! N m.

Step 3. Extend _b to all k{£T(E1,..., EM)} by

K-linearity.

PROOF: Suppose Pi is of the form E_,,,--. ETa,

for some indices 1 < 3'1, ..., 7m -< /_I. Then

X(Pi) is equal to

The next three propositions describe funda-

mental properties of the map ¢. Note that the

next proposition is an example of simplification

by factoring X through the set of labeled trees:

we will see that often ¢ and ¢ together are

cheaper to compute than X.

N N

( _ a._= Du,,, )"" ( Z a._¢ Dr,, ).
#rn=l /-tl =1

After expansion there are m!N TM terms, each of

which involves m differentions and m multiplica-

tions.

Proposition 4 (/} The map _b is an algebra

homomorphism.

(ii)

Proposition 6 The cost of computing ¢(p) is
Imm!.

X=¢o¢.

PROOF: The proof of (i) is a straightforward ver-

ification and is contained in [7]. Since X and ¢o¢

agree on the generating set El,..., EM, part (ii)

follows from part (i).

PROOF: A monomial of degree m is sent to the

sum of m! labeled trees under the map ¢. This

follows easily by induction and is contained in [5].

By the assumptions above the cost of construct-

ing a labeled tree with m nodes (in addition to

the root) is m units. Therefore the total cost is
lmm!.



Proposition 7 Let a = ¢(p), and denote by I_1

the number of labeled trees with non-zero coeffi-

cients in a. Then the cost of computing ¢(a) is

2mlalN TM.

PROOF: Fix a labeled tree

t 6 f.q-m(E,,..., EM).

From the definition of the map ¢ we see that the

cost of computing ¢(t) is 2mN m, and hence the

total cost is 2miaiN m.

Combining these three propositions gives

Theorem 8 Under the assumptions above, the

cost COStNAIVE(P) of computing

l

x(p) =E x(p )
i=1

is 21mm! N TM, while the cost CostBETTER(p) of

computing

L = ¢ o ¢(p)

is lm m! + 2mia]N m.

Theorem 1 now follows.

6 Computing derivations with

several processors

In the previous sections, we have shown how

trees are naturally associated with the symbolic

computation of higher order derivations. In this

section, we show how trees also lead to natu-

ral parallel algorithms for symbolic computation.

Rather than try to state and prove the sharpest

results, we are content to state and prove an il-

lustrative theorem of this type.

The problem is to rewrite the expression p fi

k<E1,... ,EM> in terms of commuting opera-

tors when several processors are available. As

usual let X(P) 6 Diff(D1,... ,DN; R) denote the

resulting linear differentia/ operator. Make the

following asssumptions:

1. p 6 k < E1, ... , EM > is of the form

l

p -" Epi,
i=1

where each term pl is of degree m.

2. The cost of a multiplication or addition is
one unit and the cost of a differentiation is

one unit; the cost of adding a node to a tree

is one unit, so that the cost of building a

tree t 6 f_7-m(E1, ..., EM) is m + 1 units.

3. We assume that p E k<E1,...,EM> is in

its simplest form; in other words, any term

E.y,,,--. E.yl appears at most once.

4. We assume that there is one processor avail-
able for each labeled tree which arises in the

computation.

Notation. Each term pi in p E k<E1,..., EM>
is of the form

ciE-_m"" E._,, ci E k.

Labellndex is defined to be an index taking val-

ues between 1 and m. If Labellndex = j, then

we denote by LabelIndex(pi) the label E- 0 in
the term pi of p. In the precomputation, we as-

sign one processor for each rooted labeled tree

in £T(E1,..., EM). Each processor u has the

following data structures associated t_o it:

.

.

for each label Ej 6 {Ex,...,EM}, a list of

processors, denoted ProcossorList(Ej) or

ProcessorList(u)( Ej);

an array TormCount containing counters

such that TormCount(u)[i] gives the num-

ber of times that term Pi in the polynomial

p 6 k<E1, ..., EM>, has contributed to

the tree u;

. a variable TreoCoefficient(u), which will
be used to store the coefficient k of the tree

t in a = ¢(p).

We say that the processor u = ut is active in
l

case _i=1TermCount(u)[i] > 0. In other words,

a processor u = ut, where t 6 LTk(E1,...,EM),

is active in case its TermCount array has some

positive entry.

We begin by describing a precomputation.

Step 1. We assodate a processor u = ut to each

tree in LTk(EI,...,EM), for k = 1,..., m.



Step 2. Let u_ be the processor assigned to the

tree t E £Tk(E1,...,EM), for k < m, in

Step 1, with labels E_k,... , E.r,. Let E_k+l
be a label. The tree t yields k + 1 trees la-

beled with E_k+_,... , E_ which arise by at-

tacking the node labeled E.yk+_ to the tree t

in all possible ways. Since these are labeled

trees, they have already been assigned a pro-

cessor by the step above. Let ul, ...,uk+l
denote these processors. In this step, we cre-

ate the list ProcessorList(E.rk+l,U ) con-

tining the processors ui,...,Uk+l. We do

this for each label E.rk+, 6 {El,..., EM}.

We give the algorithm to do the parallel com-

putation of ¢ in Figure 1. We make two remarks.

First, write conflicts are possible in Step 2 of

the algorithm. Indeed, consider the addition of

TermCounZ(u)[i] to TermCount(u')[i] by proces-

sor u. Suppose that processor u' is associated

with tree t'. Then the number of possible incre-

ments of TermCounz(u')[i], if u' is associated with

a tree with k + 1 nodes, is at most k. This is be-

cause one processor is associated with each tree

that arises by deleting one leaf from t'. A pro-
cessor associated with a tree with k nodes will

access the element TermCounZ(u)[i] of k other

processors. Therefore a processor u will need

to wait at most lm cycles to access the entry

TermCounZ(u')[i], and will need to access at most
m such entries for each i.

Second, using Brent's algorithms for the par-

allel computation of arithmetic expressions [1],

it is possible to compute ¢(t) in parallel. Let

c_ = ¢(p) and recall that the number of op-

erations to compute ¢(a)is O(m[a]N TM) by

Proposition 7. Therefore, given sufficiently

many processors, ¢(a) can be computed in time

O(log2(m

Proposition 9 The cost of computing ¢(p) ac-

cording to the algorithm in Figure 1 is 0(12m3).

PROOF: Step 0 and Step 3 take time O(1). Step 1

takes time 0(12). If t 6 f-.Tk(E1, ..., EM) and

u = ut, then the following estimate holds for the

inner loop of Step 2. The outer loop is repeated

m times. The next sequential loop is repeated

I times. Since the length of ProcessorLisZ is

(* Step 0 *)
for each processor u do simultaneously

fori:= ltoldo

TermCount(u)[i] := 0;

end;

end;

(* Step 1 *)

LabelIndex := 1;
fori:= 1 toldo

TerraCounZ(ui)[i] := 1;

end;

(* In Step 1, ui denotes the tree with two nodes,
in which the node other than the root is

labeled with LabelIndex(pi). *)

(* Step 2 *)
for LabelIndex := 1 to m - 1 do

for each active processor u = ut for which

t has LabenIndex + 1 nodes do simultaneousl:

for i := l to I do

for all u' 6 ProcessorList(Labellndex(pi),

TermCotmt(u')[i] := TerraCount(u')[i]

+TormCount(u)[i];
end;

end;

end;

end;

(* Step 3 *)

for each active processor u = ut for which

t has m + 1 nodes do simultaneously

TreeCoefficient(u) := 0;
for i := l to l do

TreeCoefficienz(u) :--TreeCoefficienZ(u)

+cl * TermCounZ(u)[i];

end;

end;

Figure 1: The Parallel Computation of ¢.



at mostm, the next sequential loop is repeated

at most m times. By the first remark above,

each of the at most m iterations of this loop will
need to wait at most Im time units to execute.

Therefore the total execution time for Step 2 is

bounded by 0(12m3). This completes the proof

of the proposition.

Recall that by Proposition 6, ¢(p) can be com-

puted in serial time O(Im m!). Comparing this

to the cost of the algorithm above gives

Theorem 1 O

Costserial C-algorithm(P)

Costparallel _algorithm(P)

=0
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